

Standardised Operating Procedure

Spirometry

chILDRANZ 2020

Level 2, 11 Finchley Street, Milton QLD 4064 PO Box 1949, Milton QLD 4064 ABN: 36 051 131 901 1800 654 301

Lungfoundation.com.au enquiries@lungfoundation.com.au

Proposed Best Practice Checklist

SPIROMETRY

Diagnostic Indications

To evaluate symptoms, signs or abnormal laboratory tests. To measure the effect of disease on pulmonary function. To screen individuals at risk of having pulmonary disease. To assess preoperative risk. To assess prognosis. To assess health status before beginning strenuous physical activity programmes.

Monitoring Indications

To assess therapeutic intervention. To describe the course of diseases that affect lung function. To monitor people exposed to injurious agents. To monitor for adverse reactions to drugs with known pulmonary toxicity.

Range and Accuracy Recommendations Specified for Forced Expiratory Manoeuv

Test	Range/Accuracy (BTPS)	Flow range (L·s ⁻¹)	Time (s)	Resistance and back pressure	Test signal		
VC	0.5-8 L, \pm 3% of reading or \pm 0.050 L, whichever is	0-14	30		3-L Calibration syringe		
FVC	greater	0-14	15	<1.5 cmH ₂ O·L ⁻¹ ·s ⁻¹ (0.15 kPa·L ⁻¹ ·s ⁻¹)	24 ATS waveforms, 3-L Cal Syringe		
FEV1		0-14	1	<1.5 cmH ₂ O·L ⁻¹ ·s ⁻¹ (0.15 kPa·L ⁻¹ ·s ⁻¹)	24 ATS waveforms		
Time zero	The time point from which all FEV _t measurements are taken	0-14		Back extrapolation			
PEF	Accuracy: $\pm 10\%$ of reading or $\pm 0.30 \text{ L} \cdot \text{s}^{-1}$ (20 L·min ⁻¹), whichever is greater; repeatability: $\pm 5\%$ of reading or ± 0.15 L·s ⁻¹ (10 L·min ⁻¹), whichever is greater	0-14		Mean resistance at 200, 400, 600 $L \cdot min^{-1}$ (3.3, 6.7, 10 $L \cdot s^{-1}$) must be <2.5 cmH ₂ O·L ⁻¹ ·s ⁻¹ (0.25kPa·L ⁻¹ ·s ⁻¹)	26 ATS waveforms		
Instantaneous flows (except PEF)	Accuracy: $\pm 5\%$ of reading or $\pm 0.200 \text{ L} \cdot \text{s}^{-1}$, whichever is greater	0-14		<1.5 cmH ₂ O·L ⁻¹ ·s- 1 (0.15kPa·L ⁻¹ ·s ⁻¹)	Data from manufacturers		
FEF 25-75%	7.0 L·s ⁻¹ , \pm 5% of reading or \pm 0.200 L·s ⁻¹ , whichever is greater	±14	15	Same as FEV_1	24 ATS waveforms		
MVV	250 L·min ⁻¹ , at V _T of 2 L within ±10% of reading or ±15 L·min ⁻¹ , whichever is greater	±14 (±3%)	12-15	<1.5 cmH ₂ O·L ⁻¹ ·s- 1 (0.15kPa·L ⁻¹ ·s ⁻¹)	Sine wave pump		
American Thoracic Society; FEV1: forced expiratory volume in one second; FEV1: forced expiratory volume in t seconds: PEF:							

American Thoracic Society; FEV1: forced expiratory volume in one second; FEV1: forced expiratory volume in t seconds; PEF: peak expiratory flow; FEF25–75%: mean forced expiratory flow between 25% and 75% of FVC; MVV: maximum voluntary ventilation; VT: tidal volume.

PROTOCOL FEV1 and FVC MANOEUVRE

FVC is the maximum volume of air exhaled with maximally forced effort from a maximal inspiration.

FEV₁ is the maximal volume of air exhaled in the first second of a forced expiration form a position of full inspiration.

There are three distinct phases to the FVC manoeuvre;

- 1) Maximal inspiration
- 2) A "blast" of exhalation, and
- 3) Continued complete exhalation to the end of test (EOT)

With appropriate coaching, children as young as 5 years of age are often able to perform acceptable spirometry [1].

Equipment

The spirometer must be capable of accumulating volume for ≥ 15 s (longer times are recommended) and measuring volumes of ≥ 8 L (BTPS) with an accuracy of at least $\pm 3\%$ of reading or ± 0.050 L, whichever is greater, with flows between 0 and 14 L·s⁻¹. The total resistance to airflow at 14.0 L·s⁻¹ must be <1.5 cmH₂O·L⁻¹·s⁻¹.

For the start of the test display, the volume-time display should include ≥ 0.25 s, and preferable 1s before exhalation starts (zero volume).

The last 2s of the manoeuvre should be displayed to indicate a satisfactory end of test.

When a volume-time curve is plotted as hardcopy, the volume scale must be $\geq 10 \text{ mm} \cdot \text{L}^{-1}$ (BTPS). For a screen display 5mm $\cdot \text{L}^{-1}$ is satisfactory.

Recommended minimum scale factors for time, volume and flow on graphical output							
Parameter	Instrument Display		Hardcopy Graphical Output				
	Resolution Required	Scale Factor	Resolution Required	Scale Factor			
Volume*	0.050 L	5 mm·L ⁻¹	0.025 L	10 mm·L ⁻¹			
Flow*	0.200 L·s ⁻¹	2.5mm L ⁻¹ ⋅s ⁻¹	0.100 L·s ⁻¹	5mm L ⁻¹ ·s ⁻¹			
Time	0.2 s	10mm∙s ⁻¹	0.2 s	20mm·s ⁻¹			
*The correct aspect ratio for a flow versus volume display is two units of flow per one unit of volume							

FEV1 and FVC TEST PROCEDURE

Check the spirometer calibration

Explain the test

Prepare the subject

Ask about smoking, recent illness, medication use, etc.

Measure weight and height without shoes

Wash hands

Instruct and demonstrate the test to the subject, to include

Correct posture with head slightly elevated

Inhale rapidly and completely

Position of the mouthpiece (open circuit)

Exhale with maximal force

Perform manoeuvre (closed circuit method)

Have subject assume the correct posture Attach nose clip, place mouthpiece in mouth and close lips around the mouthpiece Inhale completely and rapidly with a pause of <1 s at TLC Exhale maximally until no more air can be expelled while maintaining an upright posture Repeat instructions as necessary, coaching vigorously Repeat for a minimum of three manoeuvres; no more than eight are usually required Check test repeatability and perform more manoeuvres as necessary

Perform manoeuvre (open circuit method)

Have subject assume the correct posture Attach nose clip Inhale completely and rapidly with a pause of <1 s at TLC Place mouthpiece in mouth and close lips around the mouthpiece Exhale maximally until no more air can be expelled while maintaining an upright posture Repeat instructions as necessary, coaching vigorously Repeat for a minimum of three manoeuvres; no more than eight are usually required Check test repeatability and perform more manoeuvres as necessary

PROTOCOL CV and IC MANOEUVRE

The VC is the volume change at the mouth between the position of full inspiration and complete expiration. These manoeuvres are unforced, except at the point of reaching RV or TLC, respectively, where extra effort is required [2]. The slow VC can be derived in two ways:

- The expiratory vital capacity (EVC) is the maximal volume of air exhaled from the point of maximal inhalation.
- The IVC is the maximal volume of air inhaled from the point of maximal exhalation, achieved by a slow expiration from end-tidal inspiration.

The IC (inspiratory capacity) is volume change recorded at the mouth when taking a slow full inspiration with no hesitation, from a position of passive end-tidal expiration.

VC TEST PROCEDURE - VC should be performed before FVC.

Check the spirometer calibration

Explain the test

Explain the subject must completely fill and empty their lungs

Prepare the subject

Ask about smoking, recent illness, medication use, etc.

Measure weight and height without shoes

Wash hands

Instruct and demonstrate the test to the subject, to include

Correct posture with head slightly elevated

Position the nose piece

Position of the mouthpiece (open circuit)

Inhale completely: In a relaxed manner, except near end-inhalation

Exhale completely: with no force, except near end-expiration

Perform manoeuvre (expiratory vital capacity EVC method) – where the subject <u>exhales</u> completely from a position of full expiration

Have subject assume the correct posture

Attach nose clip, place mouthpiece in mouth and close lips around the mouthpiece

Exhale completely to RV Inhale to TLC

Exhale to RV maximally until no more air can be expelled while maintaining an upright posture

The subject should reach maximal inhaled an exhaled volume with a relatively constant flow

Repeat instructions as necessary, coaching vigorously

Repeat for a minimum of three manoeuvres; no more than eight are usually required

Check test repeatability and perform more manoeuvres as necessary

Perform manoeuvre (IVC method) – where the subject <u>inhales</u> completely from a position of full expiration

Have subject assume the correct posture

Attach nose clip, place mouthpiece in mouth and close lips around the mouthpiece

Exhale completely to RV

Inhale to TLC

Exhale to RV maximally until no more air can be expelled while maintaining an upright posture

The subject should reach maximal inhaled an exhaled volume with a relatively constant flow

Repeat instructions as necessary, coaching vigorously

Repeat for a minimum of three manoeuvres; no more than eight are usually required

IC TEST PROCEDURE

Check the spirometer calibration

Explain the test

Explain the subject must completely fill and empty their lungs

Prepare the subject

Ask about smoking, recent illness, medication use, etc.

Measure weight and height without shoes

Wash hands

Instruct and demonstrate the test to the subject, to include

Correct posture with head slightly elevated, with shoulders down and relaxed

Position the nose piece

Position of the mouthpiece (ensure no air leaks)

Breathe regularly for several breaths until the end-expiratory lung volume is stable (this usually requires at least 3 tidal manoeuvres)

Take one deep breath to TLC with no hesitation

Perform manoeuvre

Have subject assume the correct posture

Attach nose clip, place mouthpiece in mouth and close lips around the mouthpiece

Breathe regularly for several breaths until the end-expiratory lung volume is stable (this usually requires at least 3 tidal manoeuvres)

Take one deep breath to TLC with no hesitation

Repeat instructions as necessary

Repeat for a minimum of three manoeuvres; no more than eight are usually required

PEAK RESPIRATORY FLOW

PEF is the highest flow achieved from a maximum forced expiratory manoeuvre started without hesitation from a position of maximal lung inflation [3]. The defining characteristics of the flow-time curve, in relation to PEF, are the time taken for flow to rise from 10% of PEF to 90% of PEF, i.e. the rise time (RT), and the duration that flow is >90% of PEF, called the dwell time (DT).

PEF TEST PROCEDURE

Check the spirometer calibration

Explain the test

Must be achieved as rapidly as possible and at as a high lung volume as possible

Prepare the subject

Ask about smoking, recent illness, medication use, etc.

Measure weight and height without shoes

Wash hands

Instruct and demonstrate the test to the subject, to include

Correct posture with neck in neutral position, not flexed nor extended

Position of the mouthpiece (ensure no air leaks)

Inhale completely

Deliver a "blow" without hesitation

Perform manoeuvre

Have subject assume the correct posture

The subject must not cough

Place mouthpiece in mouth

Inhale completely

Deliver a "blow" without hesitation

Repeat instructions as necessary

Repeat for a minimum of three manoeuvres; no more than eight are usually required

MAXIMUM VOLUNTARY VENTILATION (MVV)

Largely superseded by FEV₁. The MVV is the maximum volume of air a subject can breathe over a specified period (12 s for normal subjects).

MVV TEST PROCEDURE

Check the spirometer calibration

Explain the test

Prepare the subject

Ask about smoking, recent illness, medication use, etc.

Measure weight and height without shoes

Wash hands

Instruct and demonstrate the test to the subject, to include

Correct seated posture

Position of the nose piece and mouthpiece (ensure no air leaks)

Perform 3 resting tidal breatns

Breathe as rapidly and deeply as possible

Perform manoeuvre

Have subject assume the correct posture

Attach nose clip, place mouthpiece in mouth and close lips around the mouthpiece

Perform 3 resting tidal breaths

Breathe as rapidly and deeply as possible

Achieve ideal breathing rate of 90-110 breaths min⁻¹

Repeat instructions as necessary

Repeat for a minimum of three manoeuvres; no more than eight are usually required

Acknowledgement:

The American Thoracic Society

M. R Miller *et al*. (2005). Standardisation of Spirometry. *Eur Respir J*, *26*: 319-338. DOI: 10.1183/09031936.05.00034805

Australian Genomics Health Alliance

References:

- 1) Eigen H, Bieler H, Grant D, *et al.* (2001). Spirometric pulmonary function in healthy preschool children. *Am J Respir Crit Care Med*, *163*: 619–623.
- 2) Guidelines for the measurement of respiratory function. Recommendations of the British Thoracic Society and the Association of Respiratory Technicians and Physiologists. (1994). *Respir Med*, *88*: 165–194.
- 3) Quanjer PH, Lebowitz MD, Gregg I, Miller MR, Pedersen OF. (1997). Peak expiratory flow: conclusions and recommendations of the European Respiratory Society. *Eur Respir J,10*: Suppl. 24, 2s–8s.